Работа на арифмометре и возможные дополнительные функции.

Главная.

APLE.NET

Что такое арифмометр.

Исторический обзор.

Разыскивается!


+ Как пользоваться.
Использование

 Базовые функции
 Арифметика
 Доп. арифметика
 Квадратный корень
 Доп. функции


Фотогалерея

Поиск модели


Описание
конкретных моделей.

+ Арифмометры.

 Все модели.

 Феликс
º Schubert AR
 Thales Geo
 ВК-1
 Facit CM2-16
º Facit CA1-13
º Hamann-manus C
º Hamann automat T
º Bunzel-Delton
º Curta
º Nisa k2
º Friden SRW
º Rheinmetall KELR
º Rheinmetall SAL
º Mercedes R38MS
º Marchant ADX
º Быстрица 2
º Contex 55

+ Суммирующие машины.

 Все машины.

º Комптометр
º Precisa 164-12

+ Специальные машины.

 Все машины

º Касса КП
º Мед. счётчик

+ Отечественные.

 Все машины.

º СДУ 110
º СДУ 138
º ДСМ
º СДВ 107
 Феликс
 ВК 1
º ВК 2
º ВК 3
º КСМ
º ВМП 2
º ВММ 2
º Быстрица


+ Статьи.

Все статьи.

+ Модели и типы.

+ История создания.

+ Разработчики.


+ Книги.

Все книги

 Учебники.
 Каталоги.
 Инструкции.

Словарь

Ссылки


+ Ремонт.

Общая информация.

 Инструменты
 Общее
 Модели
º Феликс
º ВК-1
º Rheinmetall
º Rheinmetall
º Marchant


Контакты

Гостевая, форум

Новости


Архив

Техническая информация

______________________


Базовые функции
Арифметика
Дополнительная арифметика
Вычисление квадратного корня
Возможные дополнительные функции


Использование

Процесс вычисления на арифмометрах всех типов принципиально сходен, поэтому на этой странице сначала подробно рассказывается, как считать на арифмометре одной из простейших моделей, а затем даются достаточно краткие инструкции для других типов.
В качестве примера используется арифмометр системы Курта - это модель не самая типичная и достаточно редкая, но, к сожалению, единственная, для которой удалось найти качественную электронную версию. Впрочем, как уже было сказано выше, конкретная модель не особенно важна, и если Вы поймёте, как считать на арифмометре "Curta", то без проблем разберётесь с любым другим.
/Ниже должна находиться электронная версия арифмометра "Curta". Если Вы её не видите - вероятно, у Вас не установлен Flash Player или он некорректно работает./


  • Слева изображён арифмометр "Curta", вид сбоку. Ряд красных прямоугольников примерно в середине рисунка - головки рычагов установки числа. Рычаг, находящийся в верхней части арифмометра служит для прямого переноса; он может вращаться вокруг своей оси (в одну сторону) и подниматься вверх / опускаться вниз (в нижнем положении производит сложение, в верхнем - вычитание).
  • Справа вверху арифмометр изображён с верхнего торца. Видны: счётчик результатов (ряд чисел на чёрном фоне), счётчик оборотов (ряд чисел на сером фоне), ручка привода (в центре), рычаг очистки регистров (оканчивается кольцом, выступающим за границу арифмометра).
  • В центре изображён переключатель направления работы счётчика оборотов (на арифмометре он находится "сзади" левой картинки). На арифмометре "Curta" этот рычаг надо перемещать вручную, на большей части других моделей он переключается автоматически.
  • Справа снизу изображена схема работы арифмометра при текущих настройках. На ней находится:
    • Нижняя строка - значение, находящееся в установочном регистре.
    • Средняя строка - значение, находящееся в счётчике результатов.
    • Верхняя строка - значение, находящееся в счётчике оборотов
    • Ряд стрелок между нижней и средней строкой - указывают, прибавляется ли число в установочном регистре к числу в счётчике оборотов (зелёные стрелки и символ "+") или вычитается (красные стрелки и символ "-").
    • Стрелка между средней и верхней строкой - указывает, к какому разряду счётчика оборотов прибавляется (или отнимается - в зависимости от цвета и подписи) единица при каждом переносе.

Функции, которыми обладают все арифмометры:

Ввод числа
Естественно, при работе на любом арифмометре (так же, как и на любом калькуляторе) Вы можете ввести число, которое потом можно будет потом использовать в качестве слагаемого, вычитаемого, делимого, делителя или одного из множителей.

В рычажных арифмометрах, к которым относится "Curta", число вводится перемещением рычагов.
Рычаги "Curta" находятся сбоку (маленькие красные ручки, которые видны на левом рисунке). Для того чтобы ввести число, достаточно сдвинуть рычаги на соответствующее количество позиций; например, для того, чтобы ввести число 109, нужно передвинуть третий рычаг справа на одну позицию вниз, а первый рычаг справа - на девять позиций вниз.

На виртуальном арифмометре следует навести указатель мыши на соответствующий рычаг, нажать на левую кнопку мыши и "перетащить" рычаг вниз.
При этом соответствующие изменения произойдут также на схеме (справа внизу).

Изменение порядка числа
Чаще всего реализовано в виде устройства передвижения каретки. Например, для того, чтобы умножить число 1554 на 11 достаточно ввести число (см.) 1554, перенести его в счётчик результатов, изменить порядок на единицу и ещё раз перенести в счетчик результатов (1554*11=1554+1554*10)

На виртуальном арифмометре следует навести указатель мыши на красную 3D стрелку и нажать на левую кнопку мыши. Стрелка находится на виде с боку, находится над барабаном с рычагами, за пределами арифмометра.
При этом соответствующие изменения произойдут также на схеме (справа внизу).

Прямой перенос числа (сложение, вычитание)
Вы можете прибавить (вычесть) введённое число к (из) счётчика результатов.

Для сложения на виртуальном арифмометре следует навести указатель мыши на красную стрелку (на виде с торца, находится в положении "4 часа") и нажать на левую кнопку мыши. При этом ручка арифмометра сделает полный оборот и произойдет прямой перенос числа.
Для вычитания на виртуальном арифмометре следует сначала навести указатель мыши на красную стрелку (на виде с боку, находится в правой верхней части рисунка и направлена вверх) и нажать на левую кнопку мыши. При этом ручка выдвинется в верхнее положение - "вычитание" (обратно опустит ручку можно, вторично нажав на стрелку). После этого следует навести указатель мыши на красную стрелку (на виде с торца, находится в положении "4 часа") и нажать на левую кнопку мыши.

При этом соответствующие изменения произойдут также на схеме (справа внизу).

Счёт оборотов
Каждый раз, когда Вы переносите число (см.), значение счётчика оборотов автоматически увеличивается (или уменьшается) на единицу в разряде, соответствующем положению каретки. Например, когда каретка в крайнем левом положении, единица прибавляется (вычитается) к крайнему правому разряду счётчика оборотов, если каретку сдвинуть на один разряд вправо, единица будет прибавляться (вычитаться) ко второму справа разряду и т.д..

На виртуальном арифмометре это также происходит автоматически, единица прибавляется или вычитается в зависимости от положения соответствующего рычага (центральный рисунок).

Очистка счётчиков
при работе на арифмометре всегда есть возможность очистить любой счётчик.

Для очистки счётчика оборотов на виртуальном арифмометре следует навести указатель мыши на красную стрелку (на виде с торца, находится в положении "11 часов") и нажать на левую кнопку мыши.
Для очистки счётчика результатов на виртуальном арифмометре следует навести указатель мыши на красную стрелку (на виде с торца, находится в положении "10 часов") и нажать на левую кнопку мыши.
Установочный регистр на арифмометре Курта очищается вручную: для очистки на нём надо установить число 0.
Примечание: положения стрелок даны для исходного состояния арифмометра. После очистки каждого регистра их положение меняется, тогда нужная стрелка выбирается по аналогии с исходным положением.

При этом соответствующие изменения произойдут также на схеме (справа внизу).


Арифметические действия

сложение A + B = ?
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее левое положение
  3. Введите число A
  4. Произведите сложение
  5. Введите число B
  6. Произведите сложение
  7. Результат находится в счётчике результатов
Пример: 12 + 9 = 21
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее левое положение
  3. Введите число 12 (на двух крайних правых рычагах)
  4. Произведите сложение
  5. Введите число 9 (крайний правый рычаг переведите в крайнее нижнее положение, второй справа - в крайнее верхнее)
  6. Произведите сложение
  7. Результат (21) находится в счётчике результатов
Вычитание A - B = ?
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее левое положение
  3. Введите число A
  4. Произведите сложение
  5. Введите число B
  6. Переведите арифмометр в режим "вычитание"
  7. Произведите вычитание
  8. Результат находится в счётчике результатов
Пример: 21 - 9 = 12
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее левое положение
  3. Введите число 21
  4. Произведите сложение
  5. Введите число 9
  6. Переведите арифмометр в режим "вычитание"
  7. Произведите вычитание
  8. Результат (12) находится в счётчике результатов
Умножение A * B = ?
  1. Очистите счётчики оборотов и результатов
  2. Переведите каретку в крайнее левое положение
  3. Введите множимое (множимым может быть A или B. В принципе, не важно, какое именно число Вы выберете в качестве множимого, но лучше взять то, у которого максимальна сумма цифр)
  4. Произведите сложение несколько раз - до тех пор, пока крайняя значение крайнего правого разряда счётчика оборотов не станет равным крайней правой цифре множителя (множитель - это то число, которое не множимое)
  5. Сдвиньте каретку на один разряд вправо
  6. Повторяйте пункты 3-4 для второй, третьей и т. д. цифр множителя до тех пор, пока множитель не окажется целиком в счётчике оборотов.
  7. Результат находится в счётчике результатов.
Пример: 23*47=1081
  1. Очистите счётчики оборотов и результатов
  2. Переведите каретку в крайнее левое положение
  3. Сумма чисел числа 47 (4 + 7 = 11) больше суммы чисел числа 23 (2 + 3 = 5). Поэтому имеет смысл взять число 47 в качестве множимого, а число 23 - в качестве множителя.
  4. Введите число 47
  5. Произведите сложение три раза
  6. Сдвиньте каретку на один разряд вправо
  7. Произведите сложение два раза
  8. Результат (1081) находится в счётчике результатов.
Деление A / B = ?
Для начала посмотрите, как выглядит "перебор", то есть вычитание из меньшего числа большего - при этом вся левая часть счётчика результатов заполняется девятками. Например, вычислите 1 - 2 = ?.
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее ПРАВОЕ положение
  3. Введите число A
  4. Произведите сложение
  5. Очистите счётчик оборотов
  6. Введите число B
  7. Переведите арифмометр в режим вычитания
  8. Поставьте переключатель счётчика оборотов в положение "+1"
  9. Производите вычитание до раз за разом, до тех пор, пока не получите "перебор".
  10. Сделайте корректирующий ход (переведите арифмометр в режим сложения, сделайте одно сложение и переведите арифмометр обратно в режим вычитания.)
  11. Передвиньте каретку на один шаг влево.
  12. Повторяйте пункты 9-11 до тех пор, пока каретка не окажется в крайнем левом положении (или, если A делится на B без остатка, до тех пор, пока не обнулится счётчик результатов)
  13. Результат находится в счётчике ОБОРОТОВ, в счётчике результатов - остаток
Пример: 2496 / 192 = 13
  1. Очистите счётчик результатов
  2. Переведите каретку в крайнее ПРАВОЕ положение
  3. Введите число 2496
  4. Произведите сложение
  5. Очистите счётчик оборотов
  6. Введите число 192
  7. Переведите арифмометр в режим вычитания
  8. Поставьте переключатель счётчика оборотов в положение "+1"
  9. Производите вычитание два раза, после этого Вы должны получить "перебор".
  10. Сделайте корректирующий ход (переведите арифмометр в режим сложения, сделайте одно сложение и переведите арифмометр обратно в режим вычитания.)
  11. Передвиньте каретку на один шаг влево.
  12. Производите вычитание четыре раза, после этого Вы должны получить "перебор".
  13. Сделайте корректирующий ход (переведите арифмометр в режим сложения, сделайте одно сложение и переведите арифмометр обратно в режим вычитания.)
  14. На счётчике результатов должно остаться число 0 - это означает, что деление завершено без остатка
  15. Результат (13) находится в счётчике ОБОРОТОВ

Дополнительно к арифметическим действиям

Цепочка сложений-вычитаний A + B - C + D - E - F + ... =?
Производится аналогично сложению и вычитанию: Вы очищаете счётчик результатов, прибавляете к нему число A, прибавляете число B, отнимаете число C, прибавляете число D и т.д.
Результат находится в счётчике результатов.

Вычисление многочлена второго порядка A*B + C*D - F*G + I*J - ... = ?
Производится аналогично умножению: Вы очищаете счётчики результатов и оборотов, вычисляете произведение A*B, очищаете счётчик оборотов, вычисляете C*D, очищаете счётчик оборотов, переводите арифмометр в режим вычитания, вычисляете F*G и т.д.

Вычисление произведения сокращённым методом
Произведение вычисляется с учётом того, что 6=10-4, 7=10-3, 8=10-2, 9=10-1. Например, для того, вместо того, чтобы вычислять 9*43 (43 - множитель, необходимо сделать 7 оборотов) можно вычислить 43*10-43, для чего достаточно сделать всего 2 оборота. Аналогично следует поступать и с более длинными числами - например, вычислять 202*333 - 2*333 вместо 182*333

Вычисление частного осциллирующим методом
Частное можно вычислять также несколько оптимизированным методом: после перебора сразу сдвигать каретку на один шаг, перевести арифмометр в противоположенный режим (из вычитания в сложение или из сложения в вычитание) и раз за разом добавлять (отнимать) делитель до следующего перебора.
Например: 57/3=19: Сначала делается два шага вычитания, затем сдвигается каретка и делается один шаг сложения.

Изменение знака числа в счётчике результатов
Обычно используется для превращения отрицательного числа (в неудобном дополнительном виде) в положительное.
  1. Перенесите отрицательное число из счётчика оборотов.
  2. Очистите счётчик оборотов (обычно это происходит автоматически).
  3. Произведите вычитание
Для осуществления этой операции, разумеется, необходимо чтобы используемый арифмометр был способен к обратному переносу.

Вычисление квадратного корня

Для вычисления квадратного корня на арифмометре используется формула суммы ряда первых нечётных чисел: «сумма первых n нечётных чисел = n^2» (доказательство). Из неё следует:

Проще всего ввести число, а затем вычитать из него нечётные числа до обнуления — и получить ответ в счётчике результатов. Но, например, для вычисления таким образом корня из 1'000'000 придётся сделать тысячу оборотов ручкой. К счастью, число можно разбить на сотни и вычислять корень цифру за цифрой — в результате вычисление квадратного корня оказывается не сложнее деления. Ещё больше упростить алгоритм можно, если умножить исходное число на 5: тогда вычитаемое будет увеличиваться не на 2 (разница между двумя нечётными числами), а на 10 (2*5), то есть на одну единицу следующего разряда — это намного удобнее (особенно для полноклавишных арифмометров, в которых для изменения цифры достаточно нажать на клавишу), к тому же результат вычисления оказывается в установочном регистре. Именн так вычисляют квадратный корень автоматы Friden.

Вместо общего описания алгоритма предлагаю просто взглянуть на пару примеров:
+ (Развернуть примеры)


Корень из 2:
первая строка — результат предыдущего действия вторая — следующее действие
 00
+02*5

вводим число, корень которго нужно вычислить
 10
-05

начинаем вычитать корень.
 05
-15

-05
+15

слишком много вычли. Прибавляем последнее вычитаемое назад, сдвигаем каретку на шаг влево, 1 в левом разряде сохраняем (это первая цифра корня) гасим пятёрку во втором рязряде (в нём мы будем искать вторую цифру), и устанавливаем пятёрку в третьем разряде.
 050
-0105

Для наглядности нули в конец чисел дописываются по мере надобности
 0395
-0115

 0280
-0125

 0155
-0135

 0020
-0145

-0125
+0145

Снова переполнение. Снова сдвигаем каретку, сбрасываем 5 в третьем разряде и устанавливаем в четвёртом.
 002000
-001405

 000595
-001415

-008200
+001415

И снова переполнение и новая цифра
 00059500
-00014105

 00045395
-00014115

 00031280
-00014125

 00017155
-00014135

 00003020
-00014145

 -11125

В установочном регистре находится число 14145; последнюю пятёрку снова отбрасываем, и получаем корень из 2 = 1.414

А теперь посчитаем корень из 20.
Если бы мы хотели вычислить корень из 200, то поступили бы так же, как с коренем из 2 — корень из 200 отличается от него в корень из 100, то есть в десять, раз, на один разряд.
А корень из 20 отличается в корень из десяти раз — его придётся считать, сдвинув на разряд вычисление. Вот так:

 000
+020*5

 100
-005

 095
-015

 080
-025

 055
-035

 020
-045

 975 — обычно арифмометры отображают отрицательные именно числа так.
+045

 02000
-00405

 01595
-00415

 01180
-00425

 00755
-00435

 00320
-00445

 99875
+00445

 0032000
-0004405

 0027595
-0004415

 0023180
-0004425

 0018755
-0004435

 0014320
-0004445

 0009875
-0004455

 0005420
-0004465

 0000955
-0004475

 9996480
+0004485

 000095500
-000044505

 000050795
-000044515

 000006080
-000044525

 999961355

Итого в установочном регистре 000044525 — отбрасываем последнюю пятёрку и получаем ответ 4.452

Алгоритм довольно сложный, но, надеюсь, если вы проделаете эти вычисления на настоящем арифмометре, идея станет ясна.


Дополнительная информация:
  • Подробное объяснение математической стороны алгоритма, и несколько примеров (на английском). (Зеркало)

  • Видеодемонстрация вычисления (на английском). (Зеркало)

  • Статья С.В.Савича с разбором альтернативного алгоритма вычисления, построенного на том же принципе. Для клавишных машин алгоритм Савича менее удобен, но при работе на рычажном Феликсе у него есть свои преимущества.

  • Возможные дополнительные функции:

    Электропривод
    Многие арифмометры снабжены электроприводом. У всех машин этой группы электрифицирован процесс прямого переноса (сложения и вычитания). Часто также электрифицируется очистка регистров, передвижение каретки и другие операции.
    Автоматическое деление
    Многие арифмометры (преимущественно у электромеханические, но есть некоторые исключения) снабжены устройством автоматического деления. При расчёте частного на таких машинах достаточно ввести делимое и делитель, после чего запустить счёт.
    Автоматическое умножение
    Некоторые электромеханические арифмометры снабжены также устройством автоматического умножения.
    Автоматическое вычисление квадрата
    Некоторые (весьма немногочисленные) арифмометры (например, вычислительные автоматы Facit, Friden RSR, ВК-3), снабжённые устройством автоматического умножения, способны также вычислять квадрат числа (то есть для вычисления квадрата достаточно один раз ввести число и нажать на соответствующую клавишу).
    Автоматическое вычисление квадратного корня
    Несколько иностранных моделей (Фирм Friden, Madas) способны вычислять квадратный корень числа нажатием одной клавиши.
    Обратный перенос числа
    Многие арифмометры (в том числе и некоторые простейшие рычажные модели) снабжены устройством обратного переноса числа из счётчика результатов (в некоторых случаях также из счётчика оборотов) в установочный регистр. Это устройство, среди прочего, существенно упрощает цепные вычисления (вида A*B*C).
    Прямое введение числа в счётчики
    Многие арифмометры (например, большая часть моделей HAMMAN, Mercedes, Rheinmetall) дают возможность оператору вводить число в счётчики результатов и оборотов, минуя установочный регистр. Обычно вводить число в счётчики напрямую намного менее удобно, чем через установочный.
    Суммирующий счётчик
    Некоторые арифмометры имеют дополнительный суммирующий счётчик, выполняющий те же функции, которые на современных калькуляторах выполняют клавиши "M+", "M-", "MR" и "MC"
    Печать
    Многие суммирующие машины и некоторые арифмометры способны печатать вводимые числа и результаты вычисления.
    Направление умножения и деления
    Многие вычислительные автоматы позволяют менять направление умножения и деления так, что произведение вычитается из значения, находящегося в счётчике результатов, делимое рассматривается как отрицательное, множитель или частное отнимаются из числа находящегося в счётчике результатов.
    Подготовка к делению и ввод делимого
    У некоторых арифмометров есть клавиша ввода делимого. При нажатии той клавиши сбрасываются счётчики каретки, каретку устанавливается в крайнее правое положение, делимое переносится с основной клавиатуры в главный счётчик (при этом к значению счётчика оборотов не прибавляется единица, как это бывает при обычном сложении), затем очищает установочный регистр.
    Работа с отрицательными числами
    Многие суммирующие машины и некоторые арифмометры предоставляют оператору возможность увидеть отрицательное число в удобном виде (то есть "-12" отображается не как "999...99988", а как (-)12)
    Установка точности деления.
    Многие арифмометры, способные автоматически осуществлять деление (преимущественно, полноклавишные вычислительные автоматы) снабжены устройством, позволяющим установить количество знаков, которые будут вычислены при делении. Важность такого устройства связанна с тем, что вычисление частного с максимальной возможной точностью (чаще всего, 8-11 знаков, что обычно излишне) может занимать до полуминуты.
    Техническая реализация этой функции проста: чаще всего, во время подготовки к делению каретка перемещается на нужное количество позиций.

    Счётчик посещений:

    791

    Яндекс.Метрика